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In the present bond-valence model (BVM), the bond-valence

parameters r0 and b are, in general, supposed to be constant

for each A–X pair and equal to 0.37 Å for all A–X pairs,

respectively. For [Ai(Xj)n] coordination polyhedra that do not

deviate strongly from regularity, these suppositions are well

fulfilled and calculated values for the bond-valence sums

(BVS)i are nearly equal to the whole-number values of the

stoichiometric valence. However, application of the BVM to

2591 [Li(Xj)n] polyhedra, where L are p-block cations, i.e.

cations of the 13th to 17th group of the periodic system of

elements, with one lone electron pair and X = O�II, S�II and

Se�II, shows that r0i values of individual [LXn] polyhedra are

correlated with the absolute value |Ui| of an eccentricity

parameter, Ui, which is higher for more distorted [LXn]

polyhedra. As a consequence, calculated (BVS)i values for

these polyhedra are also correlated with |Ui|, rather than being

numerically equal to the stoichiometric valence of L. This is

interpreted as the stereochemical influence of the lone

electron pair of L. It is shown that the values of the correlation

parameters and the R2 values of the correlation equations

depend on the position of the L cation in the periodic system

of elements, if the correlations are assumed to be linear. This

observation suggests that (BVS)L describes a chemical

quantity that is different from the stoichiometric valence of L.
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Dedicated to the late Linus

Pauling who, more than 75

years ago, founded the bond-

valence model, and to David

Brown who transformed this

model into a readily and

successfully applicable

method in inorganic crystal

chemistry.

1. Introduction

The bond-valence model (BVM) in its present form is a

powerful tool for analysing inorganic crystal structures on the

basis of the valence distribution between the atoms. It can be

traced back to Pauling’s (1929) proposal that the valence of an

atom is distributed among the bonds to its neighbours.

In the majority of structures, values of the bond-valence

sums (BVS), calculated using the empirical bond-valence/

bond-length relations, are within 0.1 v.u. (valence units) of the

whole-number values of the classical atomic valence. Various

authors have, however, noticed that in some cases agreement

between such BVS values and the corresponding atomic

valence is poor and that deviations of up to 1 v.u. are some-

times observed. This is true for structures containing small

cations located in larger voids of a relatively rigid framework

(Brown, 1992), for structures containing complexes in which

the central metal atoms have valences V � 0, such as

NaCo(CO)4 (Naskar et al., 1997), for structures with strong

hydrogen bonds, O—H� � �O (e.g. Brown, 1992), and for



structures containing cations with lone electron pairs such as

TlI, SnII, PbII and SbIII 1 (Brown, 1992; Wang, 1993; Krivo-

vichev & Brown, 2001).

Such discrepancies, although rather small in number

compared with the much larger number of successful analyses,

indicate limitations inherent in the present BVM. In this

report the present BVM is re-examined in order to find the

reasons behind its insufficiencies.

Valence, which in bond-valence theory has so far been

ascribed to each atom within a compound, is the classical

valence that is derived from the stoichiometry of the

compound and is, throughout this paper, called the stoichio-

metric valence,2 stoichV. Because of the chemical laws of

constant and multiple proportions, the values of stoichV are

whole numbers, stoichV = ..., �2, �1, 0, +1, +2, ... (v.u.).

2. Historical development of the BVM

As a detailed review of the present BVM is available (Brown,

2002), only a brief review with special emphasis on those

aspects shall be given that are necessary to recognize possible

insufficiencies and to suggest improvements.

Crystal structures of inorganic compounds are usually

described as frameworks of cation-centred coordination

polyhedra [AXn] 3 or of anion-centred polyhedra [XAm].

Although descriptions of a crystal structure on the basis of

[AXn] and of [XAm] coordination polyhedra are equivalent,

we shall prefer, in the following discussion, descriptions based

on [AXn] polyhedra.

According to Pauling’s (1929) electrostatic valence prin-

ciple, the valence Vi of a cation Ai is distributed among its Ai—

Xj bonds such that

Vi ¼
Xn

j

sij ¼ ðBVSÞi ½v:u:�; ð1Þ

where (BVS)i is the bond-valence sum, i.e. the sum over all

bond valences, sij, of Ai. For sij Pauling introduced the term

bond order, which has been replaced by the term bond

valence, which was introduced by Donnay & Allmann (1970).

If all bonds Ai—Xj of a coordination polyhedron (CP) are

equivalent, n is equal to the coordination number (CN)i of the

cation Ai

Vi ¼ ðBVSÞi ¼
XðCNÞi

j¼1

sij ¼ ðCNÞi � sij ð2Þ

and

sij ¼ Vi=ðCNÞi: ð2aÞ

For example, the mineral zircon Zr[8cb]Si[4t]O½3�4
4 (Kolesov et

al., 2001) contains zirconium ions in cubical and silicon in

tetrahedral coordination. Applying (2) and (2a) and assuming

that Vi = stoichVi

sZr�O ¼
stoichVZr=ðCNÞZr ¼ 4 v:u:=8 ¼

4

8
v:u:;

sSi�O ¼
stoichVSi=ðCNÞSi ¼ 4 v:u:=4 ¼

4

4
v:u:

and

ðBVSÞO ¼
X3

1

sO�ðZr; SiÞ ¼ � 2�
4

8
þ

4

4

� �
¼ �2 v:u: ¼ VO

is derived, which is equal to the corresponding stoichiometric

valence of the oxygen anion.

This result is not trivial, as the application of (2) and (2a) to

the structure of hedenbergite, CaFe[Si2O6] (Zhang et al.,

1997), or, with additional information, Ca[8cb]Fe[6o]Si
½4t�
2 O1

½4�
2

O2
½3�
2 O3

½4�
2 , shows. With cation size increasing from Si to Ca, the

corresponding CPs in hedenbergite are increasingly distorted

with regard to their cation–oxygen distances. If the bond

valences are calculated with (2a) and Vi = stoichVi, calculated

(BVS)j values of �1.917, �1.583 and �2.500 v.u. of the three

crystallographically non-equivalent kinds of O atoms deviate

considerably from the stoichiometric valence �2 v.u. of

oxygen.

Pauling (1947) realised that, for a given [AXn] polyhedron,

the bond valences sA—X are smaller the longer their inter-

atomic distances, DA—X. For bonds between two metal atoms

of the same element or between two C atoms of radius R, he

derived the equation

Rðn ¼ 1Þ � RðnÞ ¼ 0:300� log n;

where n is the bond order, which does not necessarily have

whole-number values. For n = 1, 2, 3, ... (single, double, triple,

... bonds) n is called the bond number. Since, for these bonds,

the interatomic distance D equals twice the atomic radii R, this

equation can be rewritten as

Dðn ¼ 1Þ �DðnÞ ¼ k� ln n with k ¼ 0:26 Å: ð3Þ

Corresponding equations have been derived for chromates by

Byström & Wilhelmi (1951) and for borates by Donnay &

Donnay (1973) with k = 0.34 and 0.37 Å, respectively.

The logarithmic function (3) can be transformed into the

exponential one

n ¼ exp½ðDðn ¼ 1Þ �DðnÞÞ=k�;

which is now usually written as
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1 Throughout this paper, distinction is made between the classical stoichio-
metric valence, stoichV, and the calculated bond-valence sum, BVS, of an atom
or ion. Within a given chemical formula, the particular values of these
quantities are given as, for example, SbIII and O�II, and Sb+3.24 and O�1.89,
respectively, and are measured in v.u. The two quantities, stoichiometric
valence and bond-valence sum, should not be confused with the charge, Q, of
an ion, which is usually given as, for example, Si2.33+ and O1.23�, and measured
in units of the elementary charge.
2 Where a term is introduced and defined in the text it is given in italics.
3 The use of bold-face letters has been suggested for structure-site symbols to
distinguish them from the usual element symbols, which are given as normal-
face letters (Smith et al., 1998). For example, A and L represent cations
regardless of coordination and with lone electron pairs, respectively, and X
represents monatomic anions.

4 Coordination numbers and coordination symbols are given as trailing
superscripts to the element symbols (Lima-de-Faria et al., 1990).



sij ¼ exp½ðr0 �DijÞ=b�; ð4Þ

where Dij is the experimental bond length.5 Combining (4) with

(1) leads to

ðBVSÞi ¼
X

j

sij ¼
X

j

exp½ðr0 �DijÞ=b� ¼ Vi; ð5Þ

which was first used by Brown & Altermatt (1985). Here, r0

and b are called bond-valence parameters. This empirical

equation (5) is presently the most widely used. It is the

fundamental equation of the present BVM.

Based on a large number M of [AXn] polyhedra from

structures filed in the Inorganic Crystal Structure Database

ICSD, Brown & Altermatt (1985) derived numerical values for

the bond-valence parameters r0 and b by minimizing

X
M

stoichVi �
X

j

sij

( )2

¼
X

M

�stoich

Vi

�
X

j

exp½ðr0i �DijÞ=b�

�2

: ð6Þ

Here, r0i is the individual r0 value of a particular [Ai(Xj)n]

polyhedron. It is calculated via

r0i ¼ b� ln stoichVi=
X

j

expð�Dij=bÞ

" #
; ð7Þ

which is derived by the transformation of (5).

Although r0i and b are correlated, Brown & Altermatt

(1985) observed that for a large number of A–X pairs the

values of b varied between 0.32 and 0.42 Å. They decided to

fix the value of b at 0.37 Å (Brown, 2002, p. 227). When they

used this value b = 0.37 Å to calculate with (7) individual r0i,

they, in addition, observed that, for the large majority of atom

pairs A–X, the calculated r0i values of a particular A–X bond

type vary only within a rather small range. This led them to

take the arithmetical mean value of the r0i values of M poly-

hedra [Ai(Xj)n],

r0ðA�XÞ ¼M
hr0iðA�XÞi ¼

1

M
�
XM

1

½r0iðA�XÞ�; ð8Þ

as the value of the bond-valence parameter, r0, for a particular

A–X type of bond.

Applying this procedure, Brown & Altermatt (1985)

derived r0 values for a large number of A—X type bonds. The

same procedure was also applied by Brese & O’Keeffe (1991)

to improve some of Brown & Altermatt’s r0 values and to

include r0 values for other A—X pairs, in particular for

homoatomic bonds A—A and X—X. The r0 values tabulated

by Brown & Altermatt (1985) and Brese & O’Keeffe (1991)

are now generally applied. Several workers have determined

additional or improved r0 values for specific A—X bond types.

A comprehensive list of r0 values has been compiled by Brown

and is available at http://www.ccp14.ac.uk/ccp/web-mirrors/

i_d_brown.

The procedure applied by Brown & Altermatt and Brese &

O’Keeffe implies that for each A—X atom pair, the right-hand

sides of (4) and (5) contain, besides the constants r0 and b, the

experimental bond length Dij as the only variable. Provided

that it is justified to set r0 and b as constant, (4) and (5) should

allow one to calculate unequivocally bond valences sij and

BVS from crystal structure data.

Taking into consideration the experimental bond lengths Dij

and the values r0(A—X) tabulated by Brese & O’Keeffe to

calculate, using (5), the BVS values of the atoms in heden-

bergite, CaFe[Si2O6], led to 2.04, 2.08, 3.92, �2.07, �1.87 and

�2.03 v.u. for the symmetrically non-equivalent atoms. The

corresponding structural formula of hedenbergite then is

Ca+2.04 Fe+2.08 [Siþ3:92
2 O�2:07

2 O�1:87
2 O�2:03

2 ] . The BVS values

obtained for the O atoms are considerably closer to the stoi-

chiometric valence of oxygen value �2 v.u. than the BVS

values �1.92, �1.58 and �2.50 v.u. derived with (2).

Instead of using logarithmic or exponential functions to

describe the relation between experimental bond length and

bond valence, Clark et al. (1969) used, to calculate bond

valence values, a third degree polynomial given by

Dij ¼ a0 þ a1sij þ a2ðsijÞ
2
þ a3ðsijÞ

3; ð9Þ

while others (e.g. Brown & Shannon, 1973) employed the

power function

sij ¼ ½R0=Dij�
N

ð10aÞ

that can be traced back to Donnay & Allmann (1970) and in

which R0 approximates r0 of (4). A similar empirical function

sij ¼ ðsijÞ0ðR
0
� �Þ3=ðDij � �Þ

3
ð10bÞ

has been derived by Mohri (2000), where (sij)0 = Vi/(CN)i is

the bond valence in a regular polyhedron, R0 is essentially the

same as r0 in (4) and � is taken as the sum of the cation radii of

both A and X.

Since (4) and (5) are the most widely used functions, the

following discussion shall be restricted to them.

3. Accuracies of calculated bond valences and bond-
valence sums

3.1. Expected mean errors of calculated bond valences and
bond-valence sums

From (4) it follows that the expected mean error of the

calculated bond valence is

j�ðsijÞj ¼ f½�ðr0Þ�
2
ð@sij=@r0Þ

2
þ ½�ðDijÞ�

2
ð@sij=@DijÞ

2
g

1=2

¼ ðsij=bÞ � f½�ðr0Þ�
2
þ ½�ðDijÞ�

2
g

1=2; ð11Þ

and its relative mean error is
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5 Dij is usually called ‘bond length’. It should, however, be pointed out that a
bond length, in the original sense of the word, is the distance between two
atoms that are linked by a chemical bond. Because of the thermal vibrations of
the atoms, the length of a bond varies with time. Therefore, Dij values derived
from structure determinations with diffraction methods do not represent bond
lengths. They, instead, represent distances between either atomic nuclei
(neutron diffraction) or between centres of gravity of the electron clouds (X-
ray diffraction), both averaged over time and space. We, therefore, prefer to
term Dij the experimental bond length over bond length. Correspondingly, we
prefer to term experimental bond angle over bond angle.



j�ðsijÞ=sijj ¼ 1=bf½�ðr0Þ�
2
þ ½�ðDijÞ�

2
g

1=2

with b = 0.37 Å. If the accuracy of both r0 and experimental

bond-length values, derived from modern structure analyses, is

assumed to be 0.01 Å or better, the expected mean error of the

bond valence is

expectj�ðsijÞj � 0:038� sij; ð12Þ

and the relative error of a bond valence should be less than

4%.

From (5) it follows that the mean error of the calculated

BVS is

j�ðBVSÞij ¼
Xn

j¼1

�ðsijÞ
2

" #1=2

: ð13Þ

For [AXn] polyhedra in which Dij values vary only slightly,

the corresponding bond-valence errors for each bond are

expected to be similar so that the expected error is

expect
j�ðViÞj � ðCNÞ

1=2
i j�ðsijÞj: ð13aÞ

In Table 1, the expected errors of the cation valences for a

number of frequently occurring polyhedra, as calculated with

(13a), are listed. When a BVS of a cation, which is calculated

from crystal structure data using (5) with b = 0.37 Å and the

tabulated r0 values, deviates from its stoichVi value by more

than its expect|�(Vi)| value calculated with (13) or (13a), the

deviation has to be explained.

For [AXn] polyhedra in which experimental bond length

values Dij vary considerably, corresponding errors have to be

calculated with (13).

3.2. Reasons for larger deviations of calculated BVS values
from stoichiometric atom valences

If for a coordination polyhedron [Ai(Xj)n]

�Vi ¼ j
calc
ðBVSÞi �

stoichVij>
expect
j�ðViÞj; ð14Þ

that is, if the difference between the value of the stoichio-

metric valence of a cation and its BVS, as calculated with (5),

is larger than the value of the expected error, expect|�(Vi)|,

calculated with (13) or (13a), one of the following explana-

tions may be correct.

(i) The determined crystal structure is wrong or incomplete.

In the latter case, Donnay & Allmann (1970) used such

observed deviations to distinguish between O�II, OH�I and

H2O in structures where the H atoms are difficult to locate

experimentally.

(ii) Only atoms of the inner coordination shell were

considered in calculating the BVS values. The omission of

more distant atoms that form so-called secondary bonds

between a central atom and its surrounding ligands leads

necessarily to calculated BVS values that are too low. This

effect of bond-distance cut-off has recently been discussed for

alkali halide and chalcogenide polyhedra (Adams, 2001).

(iii) A crystallographic Wyckoff position is statistically

occupied by atoms of different elements or vacancies, or by

atoms of the same element having different stoichiometric

valences. For example, at temperatures below 120 K magne-

tite, Fe3O4 is essentially an inverse spinel in which, according

to its structural formula (FeIII)[4t] (FeIIFeIII)[6o] O�II
4 , the

octahedrally coordinated structure site is occupied by stoi-

chiometrically divalent and trivalent iron cations in the ratio

1:1, whereas the tetrahedrally coordinated site is exclusively

occupied by trivalent iron (Fleet, 1981). With the atomic

coordinates given by Fleet and the bond-valence parameters

of Brese & O’Keeffe, (BVS)i values of 2.82 and 2.59 v.u. are

derived using (5) for the Fe cations in the tetrahedrally and

octahedrally coordinated positions, respectively. With

diffraction methods alone, no distinction can be made between

statistical occupation of the octahedral site by cations that are

permanently stoichiometrically divalent and trivalent, and a

situation where fast electron hopping between FeII and FeIII

ions occurs. Such questions can only be answered by spec-

troscopic methods, such as Mössbauer spectroscopy.

(iv) Values of bond-valence parameters r0 and b that have

been used to calculate the bond-valence sums are inaccurate.

(v) The structure belongs to one of the groups of

compounds mentioned in the second paragraph of x1.

4. The influence of coordination-polyhedron distortions
on calculated BVS values for cations with one lone
electron pair

4.1. Atoms of p-block elements with one lone electron pair

Various authors have observed that cations with large

differences between stoichVi and the values of their BVSs

calculated with (5), i.e. cations with large values of �Vi, have

distorted CPs. It is noteworthy that this is particularly true for

CPs in structures belonging to the group of compounds

mentioned in x1. However, a systematic analysis of the influ-

ence of CP distortion on �Vi is lacking.
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Table 1
Values of the expected mean errors of (BVS)i calculated with (13a) for
various [AXn] polyhedra.

Polyhedra stoichVi (v.u.) expect|�(Vi)| (v.u.)

[BO3]3�, [SbO3]3� 3 0.066
[CO3]2� 4 0.088
[NO3]� 5 0.110
[LiO4]7� 1 0.019
[ZnO4]6- 2 0.038
[BO4]5�, [AlO4]5� 3 0.057
[SiO4]4�, [SiN4]8� 4 0.076
[PO4]3�, [PN4]7� 5 0.095
[SO4]2� 6 0.114
[ClO4]� 7 0.133
[NaO6]11� 1 0.016
[MgO6]10� 2 0.031
[AlO6]9� 3 0.047
[SiO6]8� 4 0.062
[CaF8]6� 2 0.027
[ZrO8]12� 4 0.054



To study such an influence, a class of chemical compounds is

needed that covers a large range of CP distortions, and for

which these distortions have the same chemical and structural

reason. Such a class is formed by inorganic compounds that

contain the so-called p-block elements of the periodic system

of elements (PSE). These elements have a valence-shell

electron configuration of ns2 npm, where n = 3, 4, 5, 6 is the

principle quantum number (period number of the PSE) and

m = 1, 2,..., 5 is the number of p electrons of the neutral atom.

These elements can have, in addition to negative stoichio-

metric valences stoichVi = N � 18, positive valences stoichVi =

N� 10 � 2m. Here, N is the group number of the cation and �
is its number of lone electron pairs. These lone electron pairs

(LEP) are more or less stereoactive and can distort their CPs

considerably.

After Wang & Liebau (1996a) had, by accident, discovered

that calculated (BVS)i values for trivalent antimony in

[SbIIISn] and [SbIIISen] coordination polyhedra depend on the

geometry of the CPs, they performed a systematic study of the

influence of the distortion of [LX�II
n ] polyhedra on calc(BVS)i,

where L are cations of p-block elements with one LEP and

X�II = O�II, S�II and Se�II. First results of these studies were

published as a short letter without details (Wang & Liebau,

1996b). These studies have now been confirmed and inter-

preted.

4.2. Application of the BVM to structures with [LXn]
polyhedra

During studies of cetineite-type phases of the general

formula A[Sb26Sb36O18][Sb1X3]2 [DxY6 � y], with A = NaI, KI,

RbI, SrII, BaII; X = S�II, Se�II; D = NaI, SbIII, CIV; Y = H2O,

OH�I and O�II, Wang (1993, Tables 7, 28b–32b) observed that

(BVS)i values of the Sb1 atoms, calculated with (4) and bond-

valence parameters b = 0.37 Å and r0 as tabulated by Brese &

O’Keeffe, varied between 3.61 and 4.04 v.u. although these

atoms are stoichiometrically trivalent. In addition, a positive

correlation between the (BVS)i values and the experimental

bond angles �i = / X—Sb1—X of the trigonal [SbIIIX3]

pyramids was found. In comparison, (BVS)i values for the Sb2

and Sb3 atoms forming [SbIIIO3] pyramids were found to

scatter much less around stoichVSbIII = 3 v.u. Using a more

accurate and larger set of 24 [SbIIIX�II
3 ] polyhedra from eight

cetineites, (BVS)SbIII values between 3.00 and 3.99 v.u. were

derived (Liebau, 2000). From these (BVS)SbIII values and the
3
h�SbIIIi values given in Wang & Liebau (1999), the correlation

ðBVSÞSbIII ¼ �1:4871 cos 3h�Sbð1;2;3Þi þ 3:1612

with a correlation coefficient R2 = 0.63 is obtained. Here, 3
h�ii

is the average of the three experimental bond angles �i at the

SbIII atoms of each [SbIIIX3] pyramid.

4.2.1. Correlations between r0i and experimental bond
angles ai and polyhedron eccentricity. A statistical analysis

based on 76 [SbIIISn] and 14 [SbIIISen] polyhedra with n� 3, as

extracted from the literature, was performed by Wang &

Liebau (1996a). Fig. 1 of that paper gives clear evidence that

the r0i values for the SbIII—S and SbIII—Se bonds, although

calculated with (7) and b = 0.37 Å, are strongly correlated with

the cosine of the average 3
h�ii of the three experimental bond

angles / X—SbIII—X between the three shortest bonds of a

[SbIIIXn] polyhedron

r0i ¼ P cos 3
h�ii þQ: ð15Þ

This result contradicts the assumption of Brown & Altermatt

(1985) that the r0i values scatter only slightly and statistically

around their arithmetic mean value.6

Wang & Liebau (1996a) concluded that the correlation (15)

between r0i and 3
h�ii for various cetineites reflects the

stereochemical influence of the LEP of the SbIII atoms on the

geometry of the [SbIIIX�II
n ] polyhedra. If this interpretation is

correct, it should also apply to L cations other than SbIII, i.e. to

all p-block elements of the PSE, which have one lone electron

pair. To check this hypothesis a statistical analysis, analoguous

to that used for the [SbIIIX�II
n ] polyhedra, was performed with

all p-block cations with a stoichiometric valence of stoichV =

N � 12. Altogether, 1924 [LX�II
n ] polyhedra with X�II = O�II,

S�II and Se�II from 1058 crystal structures were extracted

from the ICSD, representing 22 different L—X bond types.

Each of these 22 data sets consists of at least ten [LXn]

polyhedra.

Linear correlations between individual r0i values and the

mean values m
h�ii of the m experimental bond angles �i =

/(X—Li—X) between the strongest bonds in the [LX�II
n ]

polyhedra are significant only for CPs that do not deviate

considerably from m-fold rotation symmetry, so that averaging

over the m experimental bond angles �i is justified. Therefore,

for CPs of general shape, cos m
h�ii was replaced by the

absolute value of an eccentricity parameter,7 Ui, which is a

vector defined as

Ui ¼ �
X

j

uij: ð16aÞ
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Figure 1
Schematic diagram showing the derivation of the eccentricity parameter
Ui for an [LiX4] polyhedron of general shape. For details see text.

6 Values of r0i that were considered to deviate greatly from the mean value of
r0i were ‘rejected from the calculation of the mean value of r0’ (Skowron &
Brown, 1990).
7 The parameter Ui had been called the asphericity parameter (Liebau &
Wang, 2004). However, Ui describes the deviation of the central ion from the
geometrical point of gravity of the peripheral ions rather than the deviation
from spherical shape of a CP. Therefore, it is suggested to call, henceforth, Ui

the eccentricity parameter.



The uij terms are the vectors pointing from the nucleus of an

atom Li to its ligands Xj (Fig. 1). Their lengths were scaled

using

juijj ¼ expð�Dij=gÞ; ð16bÞ

where an average value of g = 0.2 Å had been chosen.

The eccentricity parameter Ui seems to be particularly

suitable to describe the polyhedron eccentricity caused by

LEPs, which is a special kind of polyhedron distortion.

Reasonable correlations of the form

r0i ¼ EjUij þ F ð17Þ

were obtained for most of the 22 data sets. Numerical details

of the preliminary analysis (number N of polyhedra used, E, F

and R2 values obtained) were given in Wang & Liebau (1996b)

without further discussion. The corresponding correlation

diagrams can be obtained from the second author on request.

For all 22 data sets, the r0i values are inversely correlated

with the absolute value |Ui| of the eccentricity parameter.

According to the R2 values, between 23% ([TlI Sn] polyhedra)

and 90% ([SnII On] polyhedra) of the variation in r0i was

attributed to |Ui|, i.e. to the degree of distortion of the CPs.

In these statistical analyses from 1996 only those [LXn]

polyhedra were included that were derived from structure

analyses that were considered to be sufficiently accurate.

Nevertheless, for several of the correlation diagrams the data

points scattered considerably and corresponding R2 values

were rather low.

To make sure that these shortcomings are not caused by

inaccuracies in the structure analyses, statistical analyses for

the [LXn] polyhedra have now been repeated using structure

data retrieved from the 2004/2 version of ICSD with the

following more stringent selection criteria:

(i) all structures are ordered and all the structure sites are

fully occupied,

(ii) the value of the reliability factor R of the structure

refinement is less than 0.0751,

(iii) there is no mixed stoichiometric valence for any atom

in the structure,

(iv) only one kind of anion is found within 4 Å from the L

cation,

(v) no warning comments are given that could indicate that

atomic coordinates are incorrect,

(vi) all bonds up to a maximum value of n are considered

that have a bond valence larger than 0.04 � stoichVL v.u.,

calculated using the Brese & O’Keeffe bond-valence para-

meters (Brown, 2002, page 43, Rule 4.1). In particular for

[LXn] polyhedra, this procedure seems to be superior to the
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Figure 2
Linear correlation diagrams r0i versus |Ui| for 2061 individual [LOn] polyhedra drawn with different scales and arranged according to the position of the
L cation in the PSE.



application of distinct coordination numbers CN, which

become more and more ill-defined if the size of the cation L

increases and its stoichiometric valence decreases.

Altogether 2061 [LOn] + 415 [LSn] + 115 [LSen] = 2591

[LX�II
n ] polyhedra from 1156, 207 and 59 structure determi-

nations, respectively, were used for this new statistical analysis.

In Figs. 2, 3 and 4 the correlation diagrams r0i versus |Ui| are

arranged in the order of the positions of the L cations in the

PSE. In Tables 2, 3 and 4 details of the analyses are compared

with those of the preliminary analysis (Wang & Liebau,

1996b).

At first glance, one would expect that the application of

more stringent selection rules leads to higher R2 values of the

correlation equations, because less accurate data are omitted

from the analysis. However, inspection of column 3 of Table 2

shows that this is true only for [BiOn] polyhedra. At second

glance, it can be seen that the experimental ranges �|Ui| =

||Ui|max � |Ui|min| are, again with the exception of the [BiOn]

polyhedra, narrower for the present analysis than for that of

1996. This is caused by the increased stringency of the selec-

tion criteria. (BVS)i values for only weakly distorted poly-

hedra are rather insensitive to small errors of modern

structure determinations, since these errors widely compen-

sate each other. Therefore, R2 values of the correlations

depend more on the width �|Ui| than on the R values of the

structure determination. Consequently, the narrower �|Ui|

ranges should lead to lower R2

values. This effect is, with the

exception of the set of the [SOn]

polyhedra, not compensated by

the large number of [LOn] poly-

hedra added to the ICSD since

1995. Inspection of Table 3 shows

that the lower R2 values of the

new analysis, compared with

those of the 1996 analysis, can be

explained mainly by the reduc-

tion of the �|Ui| ranges.

A corresponding comparison

of analysis results for the [LSn]

and [LSen] polyhedra listed in

Tables 3 and 4, respectively, is

inconclusive, probably due to the

very narrow ranges of �|Ui| in

both analyses.

The data listed in Tables 2, 3

and 4 and shown in Figs. 2, 3 and

4 of the present analysis and a

comparison of these figures with

the unpublished figures of the

earlier analysis (available on

request from the second author)

confirm that these results and

those of the analysis of 1996 are

qualitatively the same. In parti-

cular, the kind and degree of

scatter of data points in corre-
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Figure 3
Linear correlation diagrams r0i versus |Ui| for 415 individual [LSn] polyhedra drawn with different scales and
arranged according to the position of the L cation in the PSE.

Table 2
Results of linear correlations r0i = E|Ui| + F for [LOn] polyhedra.

First line: 2061 polyhedra retrieved from the ICSD release 2004/2, analyses
carried out in 2005; second line (italics): 1414 polyhedra, analyses carried out
in 1996. N = number of polyhedra; R2 = percentage of total variation of r0i that
is explained by the regression; �|Ui| = experimental range |Ui|max � |Ui|min.

L—O N R2 �|Ui| � 105 E � 10�2 F

SIV—O 45 0.51 16 �3.3 (5) 1.84 (3)
52 0.56 13 �2.4 (3) 1.78 (2)

ClV—O 21 0.55 10 �2.1 (4) 1.82 (3)
10 0.64 10 �1.7 (4) 1.78 (3)

AsIII—O 57 0.39 8 �5.5 (9) 1.90 (2)
56 0.45 10 �3.2 (5) 1.84 (1)

SeIV—O 427 0.24 19 �2.9 (2) 1.892 (7)
171 0.27 16 �2.4 (3) 1.871 (9)

BrV—O 26 0.68 5 �6.3 (9) 2.05 (3)
19 0.88 14 �4.7 (4) 1.99 (1)

SnII—O 46 0.80 5 �39 (3) 2.14 (1)
38 0.90 6 �36 (2) 2.102 (8)

SbIII—O 101 0.50 8 �14 (1) 2.08 (1)
93 0.55 8 �11 (1) 2.038 (8)

TeIV—O 203 0.35 13 �5.7 (6) 2.047 (7)
138 0.54 14 �5.9 (5) 2.035 (6)

IV—O 204 0.32 9 �6.3 (6) 2.10 (1)
164 0.67 14 �8.9 (5) 2.128 (9)

TlI—O 156 0.42 2.4 �160 (25) 2.229 (6)
108 0.54 2.4 �144 (10) 2.192 (6)

PbII—O 412 0.41 7 �36.0 (2) 2.166 (3)
377 0.54 8 �36 (20) 2.149 (3)

BiIII—O 363 0.32 10 �19.3 (10) 2.157 (5)
188 0.28 8 �10 (1) 2.103 (4)



sponding correlation diagrams are similar for both analyses.

Although in most of the diagrams the data points scatter

considerably and, consequently, the corresponding R2 values

are rather low, the tables and the diagrams show clearly that in

the case of the [LOn] polyhedra between 24 and 80% and of

the [LSn] polyhedra between 13 and 90% of the scatter can be

explained by (17). This means that, at least for [LXn] poly-

hedron types for which R2 > 0.50, the r0i values are correlated

with polyhedron eccentricity, in contradiction to the assump-

tion r0 = const of the present BVM. Reasons why, e.g. for

nearly half of the [LOn] data sets, the correlation between the

values of r0i and |Ui| is poorer than R2 = 0.50, will be discussed

in x4.2.3.

4.2.2. Correlations between BVS and polyhedron eccen-
tricity. The same 2591 [LX�II

n ] polyhedra retrieved from ICSD

2004/2, from which (17) was derived, were used to calculate

the BVS of their L cations, (BVS)i, using (5) and the bond-

valence parameter values b = 0.37 Å and r0 tabulated by Brese

& O’Keeffe. For these (BVS)i values regression analyses were

performed in the same way as described in the previous

section for the r0i values. It can be shown that corresponding

BVS and |Ui| values are linearly correlated following

ðBVSÞi ¼ E0jUij þ F 0: ð18Þ

Results of the analyses are given in Tables 5–7 and the

regression diagrams are shown in

Figs. 5–7.

As expected from (5), the

scatter of the data points and R2

values for the correlations (BVS)i

versus |Ui| are very similar to

those for the corresponding

correlations r0i versus |Ui|. It can

clearly be seen that the calculated

BVSs increase with increasing

|Ui|, i.e. the more distorted the

polyhedra.

4.2.3. Consideration of R2

values and the scatter of data
points in the correlations.
Following (5), r0 and (BVS)i are

intimately linked with each other.

Therefore, with regard to the

accuracies of their correlations

with |Ui|, it is sufficient to

consider the correlations (BVS)i

versus |Ui|. According to Tables

5–7, the R2 values range between

13–94% for the individual sets of

[LX�II
n ] polyhedra. This means

that between 13 and 94 percent of

the variation of (BVS)i can be

explained by the influence of |Ui|

on (BVS)i, where all the correla-
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Figure 4
Linear correlation diagrams r0i versus |Ui| for 115 individual [LSen] polyhedra drawn with different scales.

Table 3
Results of linear correlations r0i = E|Ui| + F for [LSn] polyhedra.

First line: 415 polyhedra, analyses carried out in 2005; second line (italics): 432
polyhedra, analyses carried out in 1996. For further details see Table 2.

L—S N R2 �|Ui| � 105 E � 10�3 F

AsIII—S 61 0.56 0.9 �10 (1) 2.45 (2)
74 0.64 2 �8 (1) 2.40 (1)

SnII—S 18 0.94 0.5 �37 (2) 2.58 (1)
19 0.86 0.6 �44 (4) 2.58 (2)

SbIII—S 127 0.66 0.6 �17 (1) 2.57 (1)
124 0.79 0.9 �25 (1) 2.61 (1)

TlI—S 107 0.13 0.08 �118 (30) 2.60 (1)
116 0.23 0.1 �130 (20) 2.59 (1)

PbII—S 33 0.23 0.17 �26 (9) 2.58 (1)
68 0.45 0.3 �37 (5) 2.57 (1)

BiIII—S 69 0.23 0.45 �8.2 (1.9) 2.58 (1)
31 0.32 0.5 �8.2 (2) 2.58 (1)

Table 4
Results of linear correlations r0i = E|Ui| + F for [LSen] polyhedra.

First line: 115 polyhedra, analyses carried out in 2005; second line (italics): 87
polyhedra, analyses carried out in 1996.

L—Se N R2 �|Ui| � 105 E � 10�4 F

AsIII—Se 31 0.72 0.45 �1.5 (2) 2.54 (2)
13 0.71 0.23 �1.2 (2) 2.51 (2)

SbIII—Se 26 0.69 0.24 �3.4 (5) 2.70 (2)
16 0.88 0.45 �3.3 (3) 2.68 (1)

TlI—Se 24 0.09 0.03 5 (12) 2.61 (2)
32 0.34 0.05 �19 (5) 2.67 (1)

BiIII—Se 34 0.57 0.20 �2.0 (3) 2.703 (4)
17 0.38 0.12 �1.3 (4) 2.69 (1)



tions were for simplicity assumed to be linear. Higher-order

functions do not give a significantly better fit, despite a larger

number of variables. Inspection of Figs. 5–7 indicates that the

type and amount of scatter of data points, and therefore the R2

values, depend on the position of the L cations within the PSE.

This suggests that they are caused by the nature of the electron

configurations of the p-block atoms.

(i) Fig. 5 shows that in the correlation diagrams for the

[LOn] polyhedra of the sixth period, [TlIOn], [PbIIOn] and

[BiIIIOn], scatter increases strongly if |Ui| approaches zero.

This can be explained, at least partly, by a specific kind of

inaccuracy of the experimentally determined atomic positions

of these L cations. Diffraction methods average atomic posi-

tions over space and time and, therefore, do not give distances

between atoms but, instead, distances between their averaged

positions (see footnote 5). In many of the structure analyses,

the atomic displacement parameters of the stereoactive TlI,

PbII and BiIII cations are found to be unusually high, indicating

that these cations actually deviate statically or dynamically

considerably from their averaged positions. This is particularly

true for those polyhedra in which the ‘averaged cations’ have

been located at special Wyckoff positions, thus leading to

‘averaged [LOn] polyhedra’ with rather low apparent |Ui|

values. In fact, in a non-averaged [LOn] polyhedron, the L

cation would deviate from its averaged position such that

some of the experimental L—O bond lengths are shorter and

others are longer than the Dij distances derived in the crystal-

structure determination and used in the correlation analyses.

As a result, the actual |Ui| value for the non-averaged poly-

hedron should be higher and, because of the mathematical

form of (7), its r0i value lower than that of the averaged

polyhedron. Correspondingly, the actual (BVS)i value should
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Table 5
Results of linear correlations (BVS)i = E0 |Ui| + F0 derived for 2061 [LOn]
polyhedra retrieved from the ICSD release 2004/2.

N = number of polyhedra; R2 = percentage of total variation of (BVS)i that is
explained by the regression.

L—O N R2 E0 � 10�2 F0

SIV—O 45 0.52 36 (5) 1.9 (3)
ClV—O 21 0.56 28 (6) 3.05 (4)
AsIII—O 57 0.39 45 (7) 2.1 (2)
SeIV—O 427 0.25 31.7 (3) 3.11 (2)
BrV—O 26 0.68 84 (12) 2.3 (4)
SnII—O 46 0.79 228 (17) 1.13 (8)
SbIII—O 101 0.50 117 (12) 2.13 (9)
TeIV—O 203 0.36 63 (6) 3.24 (7)
IV—O 204 0.32 87 (9) 3.6 (2)
TlI—O 156 0.49 487 (40) 0.85 (2)
PbII—O 412 0.44 196 (11) 1.72 (2)
BiIII—O 363 0.35 154 (11) 2.48 (4)

Figure 5
Linear correlation diagrams (BVS)i versus |Ui| for 2061 individual [LOn] polyhedra drawn with different scales and arranged according to the position of
the L cation in the PSE. The horizontal lines indicate the whole-number values of stoichVi.



be higher than that for the ‘averaged’ polyhedron used for the

correlations of Fig. 5. It is presumed that, for this kind of [LOn]

polyhedra, Dij values derived from spectroscopic (e.g. IR and

NMR) methods, if available, would lead to less scatter of data

points and higher R2 values than Dij values derived with

diffraction methods. [CuO6] octahedra dynamically distorted

by Jahn–Teller effects were previously discussed by Burns &

Hawthorne (1996).

(ii) Figs. 5 and 6, in addition, show that in the correlation

diagrams of [LXn] polyhedra with large, low-valent L cations

such as SnII and SbIII, there is little scatter in the data around

the regression line. The degree of scatter is almost indepen-

dent of |Ui|. This is probably related to the higher flexibility in

the bond configurations of these polyhedra. In contrast, for

[LOn] polyhedra with high-valent L cations such as SeIV, TeIV

and IV, the data points tend to be concentrated in a small range

of |Ui| values and scatter strongly in this range, which is

dominated by [LO3] pyramids. As a consequence, R2 values of

the corresponding correlations are particularly low for the

latter and relatively high for the former. The fact that this

effect is obviously restricted to certain regions of the PSE

indicates that this effect has a chemical reason just as does the

scatter described in the previous paragraph.

5. Results

The statistical analyses presented in x4 show that for [LX�II
n ]

polyhedra, where L are cations with one LEP, the r0i values are

inversely correlated with the absolute value |Ui| of the

eccentricity parameter, i.e. with the distortion of the CPs. This

disagrees with the assumption made in the present BVM that

r0 can be considered to be constant. In addition, because of

(5), BVSs calculated with b =

0.37 Å and the tabulated r0

values of Brown & Altermatt

(1985) or Brese & O’Keeffe

(1991) are also correlated with

|Ui| rather than being constant

and, in particular, equal to the

integer values of stoichVi.

It is, of course, possible to

adjust the calculated BVSs to the
stoichV values by mathematical

treatment. In fact, there are a

number of recent publications in

which, for various A—X bond

types in strongly distorted [AXn]

polyhedra, new r0 values (e.g.

Trzesowska et al., 2004) or r0 and

b 6¼ 0.37 Å values (e.g. Lösel et

al., 1993; Burns et al., 1997;

Krivovichev & Brown, 2001;

Locock & Burns, 2004; Sidey,

2006) are determined in order to

minimize discrepancies between

(BVS)i and stoichV. Such attempts

may improve the agreement

between calc(BVS)i and stoichVi

for the ions for which the r0 and

b parameters were specifically

refined. However, as pointed out
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Figure 6
Linear correlation diagrams (BVS)i versus |Ui| for 415 individual [LSn] polyhedra drawn with different scales
and arranged according to the position of the L cation in the PSE. The horizontal lines indicate the whole-
number values of stoichVi.

Table 7
Results of linear correlations (BVS)i = E0|Ui| + F0 derived for 115 [LSen]
polyhedra retrieved from the ICSD release 2004/2.

For further details see Table 5.

L—Se N R2 E0 � 10�5 F0

AsIII—Se 31 0.73 1.1 (1) 1.9 (1)
SbIII—Se 26 0.70 2.7 (4) 2.0 (1)
TlI—Se 24 0.01 �2 (4) 1.28 (7)
BiIII—Se 34 0.59 1.8 (3) 3.13 (4)

Table 6
Results of linear correlations (BVS)i = E0|Ui| + F0 derived for 415 [LSn]
polyhedra retrieved from the ICSD release 2004/2.

For further details see Table 5.

L—S N R2 E0 � 10�3 F0

AsIII—S 61 0.55 76 (9) 1.6 (2)
SnII—S 18 0.95 178 (11) 1.39 (3)
SbIII—S 127 0.67 147 (9) 2.18 (6)
TlI—S 107 0.11 364 (99) 1.11 (3)
PbII—S 33 0.22 136 (46) 1.86 (4)
BiIII—S 69 0.22 62 (14) 2.76 (3)



by Wang & Liebau (2005), this may simply shift the discre-

pancy to other atoms of the structure.

In some cases, substantial deviations of the calculated BVSs

from stoichV, particularly in transition metal oxides, have been

attributed to physical reasons such as lattice-induced strain

and cation–cation repulsions (Brown, 1992, 2002). However,

at least in compounds containing [LXn] polyhedra, the

correlation (18) between (BVS)i and |Ui| reflects the influence

of the stereoactive lone electron pair on the geometry of the

polyhedra. This is a chemical effect and not an artefact of the

bond-valence parameters. It is, therefore, concluded that the

BVSs reflect a chemical property of an atom that is different

from its stoichiometric valence. For this property the term

structural valence is suggested (Liebau & Wang, 2005). This

structural valence will be defined and its properties described

in a separate paper (Liebau & Wang, 2007).

6. Discussion and future prospects

In x4.2.3, two reasons are given, which give rise to rather low

R2 values of correlations (17) and (18) between r0i and (BVS)i,

on the one hand, and |Ui| on the other. There are other

reasons that also contribute to low R2 values that should in the

future be considered in order to better describe the correla-

tions between (BVS)i and the polyhedron distortion.

(i) Distortion index: It is obvious that, at least for centro-

symmetric CPs such as the centrosymmetric Jahn–Teller

distorted polyhedra of transition element cations, the eccen-

tricity parameter Ui is not suitable to describe polyhedron

distortion. For these polyhedra, |Ui| = 0, because for each A—

X bond with uij there is another one with �uij, no matter how

different the experimental bond lengths Dij within a poly-

hedron may be. This does not necessarily mean that the r0i and

(BVS)i values calculated for [AXn] polyhedra of general shape

are not correlated with the distortion of their CPs. It only

shows that Ui is not a universal distortion index that fully

describes the distortion of a CP. Therefore, the scatter of data

points in Figs. 2–7 and the relatively low R2 values of part of

the correlations r0i and (BVS)i versus |Ui| listed in Tables 2–7

are probably partly due to the fact that Ui does not fully cover

all kinds of polyhedron distortion.

If Ui does not describe all kinds of CP distortions, what

should a ‘universal distortion index’ look like? Also, is the

construction of an universal distortion index possible?

Several distortion indexes have been described in the

literature (Robinson et al., 1971; Dollase, 1974; Gaite, 1980;

Makovicky & Balić-Žunić, 1998). All of them take into

account both experimental bond lengths Dij and, although

only indirectly, experimental bond angles �i. However, all of

them are based solely on the geometrical arrangement of the

atoms of the polyhedron. Consequently, they ignore that the

strength of the interaction between the atoms depends on the

distances between them. Therefore, distortion indexes that are

only based on geometry are not well suited to reflect crystal-

chemical and energetical interrelationships between struc-

tures.

In contrast to these distortion indexes, the eccentricity

parameter Ui is defined such that the experimental bond

lengths Dij are weighted with an exponential function (16b),

which makes allowance for the fact that the strength of a bond

decreases with increasing bond

length. This is the reason why

correlations r0i and (BVS)i

versus |Ui| reflect chemical

relationships. Wang & Liebau

(1996b) have reported that for

different L—X types the

optimal value of the constant g

in (16b), which led to highest R2

values for (17), varies between

0.10 Å for SIV—O and 0.25 Å

for AsIII—O, and that for

simplicity an average value of g

= 0.20 Å has been used in the

statistical analyses. Therefore,

the eccentricity parameter Ui

can be improved if g is allowed

to vary.

While the eccentricity para-

meter of Wang & Liebau

(1996b) takes into account the

chemical strength of the bonds

directly via the exponential

function (16b), similar consid-

erations of bond strengths are

found in the distortion indices

�H and �R recently proposed
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Figure 7
Linear correlation diagrams (BVS)i versus |Ui| for 115 individual [LSen] polyhedra drawn with different
scales. The horizontal lines indicate the whole-number values of stoichVi.



by Lalik (2005) and Brown (2006), respectively. However,

both �H and �R ignore the spatial distribution of bonds in a

coordination polyhedron since neither of them includes bond

angles, and both indices are sensitive to how the bond length

cut-off is chosen.

If, even for L—X bonds, the eccentricity parameter

contains, in addition to the experimental bond lengths Dij and,

indirectly, experimental bond angles �i, an additional variable

g, it is obvious that for other ionically, covalently or metalli-

cally bonded [AXn] polyhedra further adjustments of the

distortion index are necessary. These adjustments will perhaps

not only involve the variable g of the exponential function of

Ui, but most likely also the mathematical form of the distor-

tion index. A ‘universal distortion index’ would, therefore,

probably have so many variables that its practical use would

be questionable.

(ii) Bond-valence parameter b: The bond-valence para-

meters r0 and b are strongly correlated when using (5) and
stoichV to calculate them. By fixing b = 0.37 Å different r0

values have been derived for bonds between cations with

different stoichiometric valences of the same element and the

same anion type (Brown & Altermatt, 1985). It was shown for

alkali halides that the correlation between r0 and b may be

weakened and both can be refined freely by including

secondary and higher coordination spheres up to 6 Å (Adams,

2001). However, the r0 and b values derived by this approach

lead to mismatches between BVS and stoichV that are

comparable to those calculated with r0 and b values tabulated

by Brown & Altermatt (1985). Recently, b values other than

0.37 Å and the corresponding r0 values have been derived

which are believed to be independent of the valence state of

the ions involved (Zocchi, 2000, 2001, 2006; Hu & Zhou,

2004).

During our statistical analyses, which led to (17) with vari-

able r0i, the individual r0 values were calculated with (7) under

the assumption that b = 0.37 Å is constant. However, while r0i

and b are mutually dependent variables, it seems reasonable to

assume that they are, in addition, both independently variable.

Therefore, future analyses of b = f(|Ui|, ...) will probably

improve the R2 values of correlations (17) and (18). Preli-

minary results show that r0i values calculated with b values

other than 0.37 Å can have substantially higher correlations

with |Ui| than those shown in Fig. 2. For instance, R2 values

derived with b = 0.37 Å (Tables 5 and 6) improved for SnII—O

from 0.79 to 0.96 with b = 0.10 Å, for AsIII—O from 0.39 to

0.64 with b = 0.64 Å and for TlI—S from 0.11 to 0.73 for b =

0.10 Å.8

(iii) General [AXn] polyhedra: So far, the correlations (17)

and (18) between r0i and (BVS)i, respectively, and |Ui| have

only been derived for the coordination polyhedra [LXn] that

are centred by p-block cations with one lone electron pair. The

question arises whether for CPs that are centred by p-block

cations with more than one lone electron pair, r0i and (BVS)i

are also correlated with the distortion of their coordination

polyhedra. Furthermore, can (17) and (18) been extended to

general [AXn] polyhedra, for which A is a s-, d- or f-block

element?

(iv) Anion-centred polyhedra [XAm]: So far, only cation-

centred polyhedra have been analysed. It will have to be

shown whether r0i values and BVSs are also correlated with

the distortion of anion-centred coordination polyhedra or not.
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